Astronomía observacional

¿Qué es la astronomía observacional?
La astronomía observacional es una rama de la astronomía que se encarga de recopilar y almacenar la información acerca del universo observable, en contraste con la astronomía teórica, que se ocupa principalmente de calcular las implicaciones medibles de los modelos físicos. Esta es la práctica y el estudio de la observación de cuerpos celestes por medio del uso de telescopios y otros instrumentos astronómicos.

Como ciencia, el estudio de la astronomía se ve algo obstaculizado por el hecho de que los experimentos directos con las propiedades del universo distante no son posibles. Sin embargo, esto es parcialmente compensado por el hecho de que los astrónomos tienen un vasto número de visibles ejemplos de fenómenos estelares que pueden ser examinados. Esto permite que los datos de observación se puedan representar en gráficos y tendencias generales. Ejemplos cercanos de fenómenos específicos, como las estrellas variables, puedan entonces ser utilizadas para inferir el comportamiento de este tipo de estrellas que se hallan mucho más alejadas. Estos puntos de referencia pueden por lo tanto ser empleados para medir otros fenómenos en ese vecindario, incluyendo la distancia a una galaxia.

Equipo de observación
El equipo y las técnicas necesarias para estudiar un fenómeno astrofísico pueden variar muchísimo. Muchos fenómenos astrofísicos de interés sólo pueden ser estudiados mediante el uso de tecnología muy avanzada y simplemente no se conocían hasta muy recientemente.

La mayoría de observaciones astrofísicas se realizan utilizando el espectro electromagnético.

La radioastronomía estudia radiaciones con una longitud de onda mayor que unos pocos milímetros. Las ondas de radio suelen se originadas por objetos fríos, incluyendo gas interestelar y nubes de polvo. La radiación cósmica de microondas de fondo es la luz del Big Bang con un corrimiento al rojo. Los púlsars fueron detectados por primera vez a través de microondas. El estudio de estas ondas requieren radiotelescopios muy grandes.

La astronomía infrarroja estudia las radiaciones con longitudes de onda demasiado largas para ser visibles pero más cortas que las ondas de radio. Las observaciones infrarrojas suelen realizarse con telescopios similares a los telescopios ópticos habituales. Objetos más fríos que las estrellas (como planetas) se estudian normalmente a frecuencias infrarrojas.

La astronomía óptica es el tipo más antiguo de astronomía. Los instrumentos más comunes son telescopios y espectroscopios. La atmósfera terrestre interfiere en mayor o menor medida con las observaciones ópticas, así que se utilizan ópticas adaptativas y telescopios espaciales para obtener la mayor calidad de imagen posible. En este rango, las estrellas son altamente visibles, y pueden observarse espectros químicos para estudiar la composición química de estrellas, galaxias y nebulosas.

La astronomía con rayos ultravioleta, rayos X y rayos gamma estudian procesos muy energéticos como púlsares binarios, agujeros negros, magnetars y muchos otros. Estos tipos de radiación no atraviesan la atmósfera terrestre, por lo que son estudiados desde telescopios espaciales como RXTE, el Observatorio de Rayos X Chandra y el Observatorio de rayos gamma Compton.

Aparte de la radiación electromagnética, pocas cosas originadas a grandes distancias pueden observarse desde la Tierra. Se han construido observatorios de ondas gravitacionales, pero éstas son extremadamente difíciles de detectar. También han sido construidos observatorios de neutrinos, algunos como el Super-Kamiokande están dedicados al estudio de eventos astronómicos que emitan neutrinos, como la explosión de supernovas. Se pueden observar rayos cósmicos, consistentes en partículas de gran energía colisionando con la atmósfera terrestre, como por ejemplo se halla el Observatorio Pierre Auger.

Las observaciones pueden variar también según la escala de tiempo. La mayoría de observaciones ópticas llevan de varios minutos a horas, de manera que los fenómenos que cambian más rápidamente no pueden ser fácilmente observados. De cualquier manera, los datos históricos de algunos objetos están disponibles desde hace siglos o milenios. Por otro lado, las observaciones a través de radio pueden examinar eventos en escalas de milisegundos o combinar años de datos.

La forma en que cambian las estrellas, o evolución estelar, suele representarse colocando las distintas variedades de estrellas en sus respectivas posiciones del diagrama Hertzsprung-Russell, que muestra los distintos estados de un objeto estelar, desde su nacimiento hasta su muerte. La composición material de los objetos astronómicos puede ser examinada utilizando fotometría, espectroscopia, radioastronomía o un observatorio astronómico15.

¿Cómo elegir un telescopio?

Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión.

Introducción a las monturas de telescopios
Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial.

Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad.

Introducción a las cámaras para astronomía
Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de «talla única» que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo.

Fuente:https://www.espacioprofundo.com/astronomia_observacional.html/

Anuncio publicitario

Astronomía Galáctica


La ciencia astronómica se divide generalmente en función de los objetos estudiados y de si la investigación es teórica u observacional. Las disciplinas básicas importantes son la astronomía observacional, la astrofísica, la astrometría y la mecánica celeste, mientras que la astronomía teórica desarrolla modelos analíticos y numéricos-físicos de los cuerpos y fenómenos celestes.
Las áreas de investigación más importantes de la ciencia celeste son:

la física del sistema solar, en particular la física solar, la planetología y la astronomía de los meteoritos
La astronomía galáctica, que estudia la Vía Láctea, su estructura y su centro,
la astronomía extragaláctica, que estudia la estructura de otras galaxias y sus núcleos activos, pero también los estallidos de rayos gamma como los procesos más energéticos del universo,
y la astrofísica relativista, que se ocupa, por ejemplo, de los agujeros negros.

Además:
La astronomía estelar estudia el nacimiento, la evolución y la muerte de las estrellas, con el apoyo del análisis espectral y la estadística estelar,
La cosmología se ocupa de la historia y la formación del universo,
mientras que la cosmogonía describe la historia de nuestro propio sistema solar. En la actualidad, está experimentando una expansión a través del novedoso campo de la exoplanetología.

La integración de muchos métodos de medición significa que la astronomía observacional está cada vez menos dividida según los rangos de longitudes de onda utilizados (radioastronomía, astronomía infrarroja, astronomía visual, astronomía ultravioleta, astronomía de rayos X y astronomía gamma), ya que los grupos de investigación y (en el mejor de los casos) los científicos individuales pueden aprovechar la información de todas estas fuentes.

Los métodos de la astronomía clásica, que prevalecieron hasta aproximadamente 1900, siguen siendo indispensables como base para otros subcampos. Como astronomía posicional, investigan la estructura del universo mediante métodos astrométricos, mecánica celeste y estadística estelar, y catalogan los cuerpos celestes (principalmente mediante catálogos de estrellas, determinación de órbitas y efemérides). En contraste con estos métodos predominantemente geométricos, la astrofísica, con sus técnicas de observación hoy en día muy diversas, investiga la física de los objetos astronómicos y del universo lejano. Además, el viaje espacial puede considerarse como astronomía experimental, y la cosmología como disciplina teórica.

Astronomía y otras ciencias
La física y las matemáticas están estrechamente relacionadas con la astronomía; las disciplinas se han cruzado a menudo y deben considerarse como una unidad en el estudio de la astronomía. En muchos casos, el universo resulta ser un laboratorio para la física; muchas de sus teorías sólo pueden probarse en su inmensidad y en objetos calientes y energéticos. Por último, pero no por ello menos importante, los elaborados cálculos de la astronomía han sido el motor de la matemática numérica moderna y del procesamiento de datos.

Tradicionalmente, la astronomía ha colaborado con la geodesia (astrogeodesia, determinación del lugar y el tiempo, sistemas de referencia, navegación), con el cálculo del tiempo y el calendario (cronología astronómica) y con la óptica (desarrollo de instrumentos y sensores astronómicos). Desde el punto de vista instrumental y metodológico, también hay fuertes referencias a la tecnología, los viajes espaciales y las matemáticas (instrumentos de medición, tecnología de satélites, modelización de órbitas y cuerpos celestes). Los métodos geodésicos también se utilizan para determinar el campo gravitatorio y la figura de otros cuerpos celestes.

En las últimas décadas, la cooperación de la astronomía con la geología y la geofísica modernas también ha adquirido una importancia creciente, ya que el campo de trabajo de las geociencias se solapa con partes de la planetología. La mineralogía analiza las rocas de la Tierra con métodos similares a los de otros cuerpos celestes. La cosmoquímica, como parte de la química, investiga la formación y distribución de los elementos y compuestos químicos en el universo y la evolución química, la astrobiología las circunstancias de la formación, origen y existencia de la vida en el universo.

Además, cada vez es más frecuente la investigación interdisciplinar con disciplinas científicas que en un principio estaban más orientadas a las humanidades:

La historia de la astronomía como parte de las ciencias históricas investiga la historia de la astronomía.
Los edificios y los hallazgos de la prehistoria y los primeros tiempos de la historia se interpretan cada vez más en un contexto astronómico (arqueoastronomía).

Dado que la astronomía también se ocupa de cuestiones sobre el origen, el desarrollo y el fin del universo en el marco de la cosmología, también hay puntos de intersección con la teología y la filosofía.

Fuente: https://leyderecho.org/astronomia-galactica/

Astrosismología

La Astrosismología es la técnica que estudia las vibraciones que se producen en algunas estrellas para conocer su estructura y dinámica interna. Al igual que en la Tierra los terremotos son provocados por el movimiento de las placas tectónicas, el movimiento del gas dentro de las estrellas produce ondas sísmicas que alteran la superficie de estas, produciendo oscilaciones. Estas oscilaciones se analizan para conocer el interior de las estrellas, ya que, las ondas transportan información del medio que atraviesan y su estudio permite averiguar cuáles son sus propiedades físicas (densidad, temperatura y composición). Esto constituye un gran logro para los investigadores, ya que, la luz estelar procede únicamente de su parte más superficial (fotosfera) y, si no existieran estas vibraciones, la parte interna de las estrellas permanecería inaccesible. Es un procedimiento parecido al que aplica la sismología terrestre que investiga el interior del planeta analizando los terremotos.

Gracias a la Astrosismología se pueden hallar los siguientes parámetros de una estrella:

1. Determinar la edad de una estrella

Con la astrosimología se pueden identificar los modos de oscilación que se propagan a distintas profundidades en el interior de la estrella. Esto permite obtener con precisión, a partir de modelos teóricos, parámetros básicos de la estrella, como su edad, estructura interna, masa, radio o densidad, y contrastar de este modo las teorías de evolución estelar.

2. Determinar la Rotación Interna

La rotación estelar es un poco curiosa: rota más rápido en el ecuador que en sus polos, fenómeno que se conoce como “rotación diferencial”, presentándose diferencias de rotación conforme se adentra a su interior. En el caso de estrellas como el Sol, este fenómeno está relacionado con la diferencia en los mecanismos de energía radiante, donde esta es transferida por convección mediante un flujo de fotones en su interior profundo. Sabemos que esto se produce en el Sol y mediante la Astrosismología este fenómeno se intentará concretar para otras estrellas.

3. Descubrir manchas solares ocultas

Mediante la utilización de datos sísmicos, los astrónomos han podido encontrar una región superdensa por debajo de la superficie solar. La Heliosismología (Sismología del Sol) ha encontrado recientemente varias manchas solares a unos 60000 Km por debajo de la superficie solar.

INSTRUMENTACIÓN UTILIZADA EN ASTROSISMOLOGÍA

La instrumentación que se utiliza para realizar Astrosismología, es básicamente la misma que la utilizada para la mayoría de otras ramas de la Astrosfísica Las oscilaciones de las estrellas inducen variaciones en la luminosidad que se detectan con dos tipos de instrumentos: los espectrómetros y los fotómetros acoplados a un telescopio. En cada caso la forma de obtener la información es diferente:

    1)  Los espectómetros: Con los espectómetros se observa la variación de las líneas del espectro estelar con el tiempo. El espectro no es más que un conjunto de líneas que producen los elementos químicos de la superficie de la estrella en la radiacción que emite esta. La posición de estas líneas es muy sensible al movimiento de la superficie permitiendo obtener un registro directo de la oscilación de la estrella.

    2)  Los fotómetros: Con los fotómetros se observa la cantidad de luz que nos llega con el tiempo, lo que nos da una idea de todas las perturbaciones que sufre la superficie estelar. Analizando las variaciones en la luz y su periodicidad se puede determinar si esas estrellas están siendo parcialmente eclipsadas por planetas, y el tamaño, distancia y período orbital aproximado de estos planetas.

Ambas técnicas son complementarias, aunque por su bajo coste y facilidad de puesta en órbita, las misiones astrosismológicas actuales llevan fotómetros con cámara CCD.

¿CUÁL FUÉ EL ORIGEN DE LA ASTROSISMOLOGÍA?

A finales de la década de los años setenta del siglo pasado, el descubrimiento de la presencia de oscilaciones en el Sol dio origen a una técnica científica: la Heliosismología. Era sólo cuestión de tiempo que este estudio se extendiera al resto de las estrellas y, a finales de los años ochenta se empezó a hablar de la Astrosismología. Parecía que la Astrosismología nunca fuese a dar el salto tan grande que dio la Heliosismología, sin embargo, todo esto cambió gracias a los espectaculares resultados obtenidos por la misión europea COROT (Convection Rotation and Planetary Transits) y por el satélite de la NASA Kepler.

El satélite Kepler fue lanzado por la NASA desde Cabo Cañaveral el 6 de marzo de 2009, y en el 2012 la misión se prolongó hasta el 30 de Septiembre de 2016. Desafortunadamente la sonda se estropeó al año siguiente y se tuvo que dar por concluida esta misión, el 15 de Agosto del 2013. Hasta esta fecha el satélite Kepler obtuvo con gran precisión, los espectros de vibración de unas 500 estrellas de tipo solar. La gran calidad de los espectros obtenidos permitió su análisis sismológico y la determinación de las masas y radios de todas estas estrellas que se encuentran en distintos estadios de su existencia.

La importancia del conocimiento de la astrosismología viene reflejada no solo por los mencionados satélites Kepler y COROT, sino también por otros proyectos como el MOST Canadiense, o proyectos conjuntos como el SOHO donde otros países están dedicando recursos en su investigación.

FUTURO DE LA ASTROSIMOLOGÍA

Ahora la pregunta es: ¿Las asociaciones de investigadores disponen de suficientes recursos humanos y tecnológicos para poder analizar los datos obtenidos? Como respuesta podríamos tener que, la Astrosismología podría constituir un campo positivo de inversión para poder extraer todas las posibilidades de una de las técnicas más prometedoras y de mayor impacto en la Astrofísica moderna.

Fuente:https://www.universidadviu.com/es/actualidad/nuestros-expertos/astrosismologia-terremotos-estelares

Maria Mitchell, la profesora de astronomía que con 14 años guiaba a los barcos balleneros

Cuando Maria Mitchell tenía 14 años, los barcos balleneros que partían del puerto de Nantucket, la isla cercana a Massachussetts donde vivía, confiaban en su habilidad para calibrar los instrumentos de navegación que les ayudarían a orientarse durante sus semanas de travesía. La conocían y estaban seguros de su habilidad porque llevaban años viéndola acompañar a su padre, William Mitchell, un hombre instruido y versado en ciencias y astronomía que se dedicó personalmente de la educación de su hija.

Mitchell nació el 1 de agosto de 1818 en una familia cuáquera, una tradición que defiende que chicos y chicas deben ser educados igual, así que ella acudió a la escuela local y recibió una amplia formación de su padre, que incluyó muchos ratos realizando experimentos juntos. Una de sus hermanas contaba que en el salón colgaba de la lámpara una bola de cristal llena de agua que él utilizaba en sus experimentos sobre la polarización de la luz y que hacía que todas las paredes de la estancia estuviesen cubiertas de fragmentos de arco iris.

La astronomía y su estudio era una disciplina muy apreciada en la isla, que vivía de los barcos balleneros que a su vez dependían de los instrumentos astronómicos para orientarse. William Mitchell se encargaba de ajustar esos instrumentos de forma que los barcos siempre supieran dónde estaban cuando pescaban en alta mar, y su hija lo acompañaba. También hacían juntos otros experimentos. Durante un eclipse solar cuando ella tenía 13 años, calculó la longitud a la que se encontraba su casa.

A Mitchell le encantaba leer, aprender y enseñar. A los 16 años empezó a trabajar como asistente de los profesores de su anterior escuela, y a los 18 se convirtió en la primera bibliotecaria del Ateneo de Nantucket.

Era un lugar tranquilo, así que ella aprovechó parte de su tiempo allí para seguir leyendo y aprendiendo. Le interesaban muchas materias: alemán, latín, matemáticas avanzadas y mecánica celeste. Algunas tardes se organizaban en el Ateneo charlas y tertulias a las que acudían mentes progresistas para hablar de todo tipo de temas, y ella también estaba allí, aprendiendo.

Disfrutaba con su tranquilo trabajo, pero un día la casualidad se puso ante ella y todo cambió. Lo hizo en la forma de un cometa inesperado. A Mitchell le gustaba pasar las noches sobre el tejado de la casa de su familia escrutando el cielo y las estrellas con su telescopio. El 1 de octubre de 1847 estaba estudiando un segmento del cielo que ya conocía cuando se encontró en él una mancha blanca que no estaba allí antes. Bajó a contárselo a su padre, que animó a Mitchell a hacer público su descubrimiento.

Ante la negativa de ella, que temía ser menospreciada por ser mujer, William Mitchell escribió a otros astrónomos influyentes para que apoyasen el descubrimiento de su hija. William C. Bond era por entonces el director del Observatorio de Harvard, en Massachussetts, y fue quien habló a los Mitchell de la medalla a la que Maria podía aspirar. Les contó que Frederik VI, rey de Dinamarca, también era muy aficionado a la astronomía, y que había ofrecido una medalla a todo el que descubriese un nuevo cometa. El monarca había fallecido en 1839 pero su sucesor, Christian VIII, continuó otorgando estos premios.

Convencida por su padre y su colega, Mitchell se animó por fin a publicar su descubrimiento, aunque un error de ellos dos al seguir los trámites para optar a la medalla casi la dejan sin ella. Por fin, un año después de haber visto el cometa que sería bautizado con su nombre, la medalla de Maria Mitchell llegó a Nantucket.

Su descubrimiento la hizo famosa, y propició que se convirtiese en la primera mujer que formó parte de la Academia Estadounidense de las Artes y las Ciencias, y fue contratada por el servicio que elaboraba el calendario náutico para seguir y consignar detalladamente los movimientos de Venus que, aunque es un planeta, servía como estrella guía para los barcos. Mucha gente venía a visitarla y quería conocerla, impresionados por la primera mujer estadounidense que había descubierto un cometa.

Gracias a sus ahorros y a un trabajo como acompañante de una chica más joven, pudo viajar por el sur de Estados Unidos y por Europa, donde visitó algunos de los observatorios más avanzados de la época, como el de Cambridge o Roma, y conoció a los astrónomos más importantes del continente, Sir George Ary, el Astrónomo Real que estableció el Meridiano de Greenwich, o el padre Secchi, el Astrónomo del Vaticano.

En 1858 Mitchell estaba de vuelta en Nantucket, y poco después, tras la muerte de su madre, se trasladó con su padre al continente. Continuó trabajando para el servicio náutico hasta que en 1865 fue contratada como profesora por Mathew Vassar para dar clase en el Vassar College, su recién inaugurada escuela para mujeres, por su habilidad científica y por ser un modelo a imitar para otras mujeres jóvenes. Ella encajó enseguida en su rol de profesora y mentora de sus alumnas, a las que animaba a no dejar que el hecho de ser mujeres las desanimase en sus empeños. «Ninguna mujer debería decir ‘Pero solo soy una mujer’. ¿Solo una mujer? ¿Y qué más se puede pedir?».

Las llevaba a excursiones para observar eclipses y las mantenía despiertas mucho más allá de la hora fijada para estudiar con ellas el cielo y sus componentes. Era muy exigente, pero era también una de las profesoras preferidas por sus estudiantes, a las que trataba como iguales: «Somos mujeres estudiando juntas».

Volvió a Europa unos años después, en 1873. Primero fue a Rusia, donde descubrió encantada que allí la educación de las mujeres jóvenes estaba mucho más extendida que en Estados Unidos. Allí las chicas a las que conoció hablaban de ciencias, de literatura y de política sin cortarse. En comparación, en EE. UU. el número de chicas con esos conocimientos era mucho más limitado. En el otro lado estaba el Colegio para Chicas de Glasgow, que también visitó en ese viaje, en el que solo se las enseñaba música, danza, dibujo y bordado, lo cual le resultó muy decepcionante. A su vuelta a su país, Mitchell participó en la fundación de la Asociación Americana para el Avance de las Mujeres.

En 1888, Mitchell enfermó del corazón y dejó las clases para trasladarse a la casa de su hermana, ante el disgusto y las súplicas de estudiantes y de la dirección de la escuela, que le pidieron que se quedase viviendo allí, aunque no pudiese seguir dando clase. Ella prefirió marcharse. Su sobrino, arquitecto, le construyó un pequeño observatorio en su nuevo hogar con la esperanza de que se recuperase lo suficiente como para usarlo. No fue así. Maria Mitchell murió el año siguiente.

Fuente: https://mujeresconciencia.com/2018/09/06/maria-mitchell-la-profesora-de-astronomia-que-con-14-anos-guiaba-a-los-barcos-balleneros/

Quién fue Henrietta Swan Leavitt, cuyo trabajo permitió que Albert Einstein y Edwin Hubble hicieran descubrimientos que cambiarían el mundo

Antes de que se inventaran las computadoras, el trabajo de computar -o hacer cálculos matemáticos- era hecho por humanos. Y a partir de finales del siglo XIX, muchas de esas «computadoras humanas» fueron mujeres.

Quizás el ejemplo más emblemático fue el de las Harvard Computers («Computadoras de Harvard«), como se conoció al grupo de casi un centenar de mujeres que trabajaron haciendo cálculos en el observatorio de la Universidad de Harvard, en Estados Unidos.

Henrietta Swan Leavitt fue una de las más destacadas, ya que su trabajo permitió que otros científicos, incluyendo a Edwin Hubble y Albert Einstein, hicieran descubrimientos que cambiarían el mundo.

Pero posiblemente nada de eso habría ocurrido si no fuera por una iniciativa de Edward Pickering, un astrónomo que en 1877 se convirtió en el director del observatorio (hoy parte del Centro de Astrofísica de la Universidad de Harvard y el Instituto Smithsonian).

«Pickering quería que las mujeres se involucraran en el trabajo del observatorio, pero en esa época solo los hombres podían tener acceso a los telescopios y al resto de los instrumentos», explica a BBC Mundo Daina Bouquin, Jefa de Bibliotecarios de la Biblioteca Wolbach en el Centro de Astrofísica de Harvard.

Entonces tuvo una idea: contratar únicamente a mujeres para realizar una tarea de suma importancia, pero que no requería tener acceso a telescopios.

«Las ‘Computadoras de Harvard’ crearon el primer catálogo de todo el cielo. Fue el primer intento en la historia de documentar el universo entero», cuenta Bouquin.

¿Cómo lo hicieron? Estudiando miles de fotografías en placas de vidrio de distintas partes del cosmos (originadas no solo en Harvard sino en observatorios de todo el mundo, toda una rareza en aquella época).

La tarea principal de estas mujeres –muchas de ellas estudiantes de astronomía, como Swan Leavitt– era medir la magnitud (o brillo) de las estrellas.

Pero ellas hicieron mucho más que eso. Utilizando como única base esas imágenes, lograron analizar y entender cosas que terminarían siendo fundamentales para la astronomía.

La Ley de Leavitt

Uno de los aportes más importantes fue el de Swan Leavitt, quien empezó a trabajar como computadora en el observatorio en 1893 tras graduarse como física en Radcliffe College (una universidad para mujeres que era considerada la versión femenina de Harvard, y que finalmente se fusionó con esa universidad).

Swan Leavitt se dedicó a analizar una sección en particular de las placas: unas fotos tomadas en Arequipa, Perú, que mostraban las Nubes de Magallanes (que, hoy sabemos, son dos galaxias enanas próximas a nuestra Vía Láctea).

En esa época se creía que nuestra galaxia era la única. Pero lo que descubrió Swan Leavitt permitiría que años más tarde el astrónomo estadounidense EdwinHubble concluyera que, de hecho, había otras.

La científica se enfocó en un tipo particular de estrella llamada una variable Cefeida que pulsa, variando su tamaño y luminosidad, con un período regular.

Estudiando diversas placas de las mismas estrellas logró establecer una relación entre su luminosidad y su período pulsar. Sobre esa base, pudo calcular su distancia.

«Hasta ese momento no había manera de medir las distancias en el espacioporque era imposible saber si una estrella se veía brillante porque estaba cerca o por su luminosidad intrínseca», explica Bouquin.

El hallazgo de Swan Leavitt permitió establecer una escala de distancias y así se pudo empezar a medir el universo por primera vez.

Hoy, esa relación entre luminosidad y período pulsar se conoce como la Ley de Leavitt.

Y la posibilidad de medir las distancias en el espacio fueron clave no solo para el trabajo de Hubble, sino también para Einstein y su teoría general de la relatividad.

Pioneras

Increíblemente, a pesar de su importancia, el trabajo de Swan Leavitt fue solo uno de varios aportes fundamentales que hicieron las «Computadoras de Harvard» a la astronomía.

De hecho, su hallazgo no habría sido posible sin el trabajo previo de su colegaAnnie Jump Cannon, quien desarrolló un sistema para clasificar estrellas.

Cannon se acabaría convirtiendo en la primera mujer que pudo utilizar el telescopio del observatorio (que, en su momento, fue el más poderoso del mundo).

En años posteriores, otra luminaria del grupo fue Cecilia Payne-Gaposchkin, una astrónoma británica que viajó a Estados Unidos para realizar un doctorado en Astronomía, ya que no podía hacerlo en Reino Unido.

«Terminaría convirtiéndose en la primera persona en obtener un PhD (doctorado) en Astronomía en Harvard«, cuenta Bouquin.

Su tesis doctoral sigue considerándose revolucionaria a día de hoy: utilizando como base placas espectrales del universo, Payne-Gaposchkin determinó que las estrellas están compuestas de hidrógeno y helio (algo que fue disputado e incluso ridiculizado en su época y luego se terminó comprobando).

Legado

Según Bouquin, la presencia de extranjeras entre las «Computadoras de Harvard» demuestra cuán avanzado y atractivo resultaba ese programa para las mujeres interesadas en astronomía.

Y ello a pesar de que era un trabajo muy mal pagado (las mujeres recibían salarios muy por debajo de sus colegas hombres del observatorio).

Entre 1877 y 1960, unas cien mujeres trabajaron como «Computadoras de Harvard», analizando más de medio millón de placas fotográficas.

Su trabajo no solo creó el llamado Catálogo Henry Draper (el primer mapa del universo entero), también quedó plasmado en cerca de 3.000 cuadernos escritos a mano, repletos de información y observaciones sobre las placas.

En la actualidad, la Universidad de Harvard trabaja en dos proyectos paralelos para digitalizar toda esta información.

Por un lado, se están escaneando las cerca de 650.000 placas fotográficas del universo que recopiló su observatorio desde su inauguración en 1847 hasta la década de los 80.

En tanto, Bouquin, como responsable de la Biblioteca Wolbach, lidera el segundo proyecto: transcribir, digitalizar y catalogar los cuadernos de las «Computadoras de Harvard». 

El proyecto se conoce como PHaEDRA (siglas de Preserving Harvard’s Early Data and Research in Astronomy) y depende de voluntarios para realizar las transcripciones. 

Hasta ahora se ha completado el 10% del trabajo. Toda la información digitalizada (tanto los cuadernos como las placas) queda disponible en el sistema de datos astrofísicos de la NASA (conocido como ADS), un índice que utilizan los astrónomos para hallar cualquier artículo.

Así, el trabajo de las «Computadoras de Harvard», que ya ha aportado tanto a la astronomía, seguirá sirviendo para las generaciones futuras que tendrán un inusual acceso a más de cien años de invaluable información astronómica.

Fuente: https://www.bbc.com/mundo/noticias-47504183

La última teoría de Hawking sobre el origen del universo

La astrofísica moderna no sería nada sin Stephen Hawking. Sus ideas fueron el germen de las nuevas teorías del espacio-tiempo. Pero su última hipótesis, publicada tras su fallecimiento, resultó sorprendente: sostenía que en realidad el universo primitivo podría ser más sencillo de lo que había postulado con anterioridad.

A Stephen Hawking, quizá el físico teórico más influyente de la física moderna, nunca le faltó sentido del humor. Un 14 de marzo de 2018 nos dejaba y lo hacía de una forma totalmente inesperada e irónica: dejando preparada una teoría que desmentía todo lo que él había promulgado durante toda su vida. Un giro de guion sublime.

Implicaciones en el origen del universo

“Esta teoría nos ofrece una nueva ruta para comprender de manera más profunda porqué nuestro universo es especial y habitable. Ofrece la esperanza de dilucidar sobre nuestro lugar en este gran esquema”, nos explica Thomas Hertog, coautor de la nueva teoría. Pero para entender esta gran afirmación, vayamos por partes.

Y si todo es más sencillo de lo pensado?

La idea actual sobre cómo se creó y evolucionó el universo fue en parte gestada por el propio Hawking, ya que en su tesis doctoral, titulada “Propiedades de Universos en Expansión”, explicó que durante el Big Bang–el momento de creación del Universo– se experimentó una fase de expansión acelerada inicial, seguida de otra de expansión decelerada en la que las partículas subatómicas (las que forman los átomos), que estaban en un estado de muy alta densidad, pasaron a formar planetas, estrellas y galaxias de una forma que entonces resultaba misteriosa y que hoy comprendemos mejor gracias a las investigaciones posteriores de Mukhanov y del propio Hawking.

Durante este proceso inicial, no solo surgió nuestro universo sino también el espacio en el que se ubica, y con él muchos otros universos, lo que dentro de la física se conoce como el “multiverso”. Ese universo de universos se puede imaginar como millones de burbujas que surgen en un agua hirviendo que no deja de expandirse. Esas burbujas se comportan en el agua de un modo impredecible, ya que cada una de ellas se puede guiar por sus propias leyes físicas. En este multiverso todo es posible.

Referencia:https://www.nationalgeographic.com.es/ciencia/ultima-teoria-hawking-sobre-origen-universo_15286

Albert Einstein

En el siglo XVII, la sencillez y elegancia con que Isaac Newton había logrado explicar las leyes que rigen el movimiento de los cuerpos y el de los astros, unificando la física terrestre y la celeste, deslumbró hasta tal punto a sus contemporáneos que llegó a considerarse completada la mecánica. A finales del siglo XIX, sin embargo, era ya insoslayable la relevancia de algunos fenómenos que la física clásica no podía explicar. Correspondió a Albert Einstein superar tales carencias con la creación de un nuevo paradigma: la teoría de la relatividad, punto de partida de la física moderna.

En tanto que modelo explicativo completamente alejado del sentido común, la relatividad se cuenta entre aquellos avances que, en los albores del siglo XX, conducirían al divorcio entre la gente corriente y una ciencia cada vez más especializada e ininteligible. No obstante, ya en vida del físico o póstumamente, incluso los más sorprendentes e incomprensibles aspectos de la relatividad acabarían siendo confirmados. No debe extrañar, pues, que Albert Einstein sea uno de los personajes más célebres y admirados de la historia de la ciencia: saber que son ciertas tantas ideas apenas concebibles (por ejemplo, que la masa de un cuerpo aumenta con la velocidad) no deja más opción que rendirse a su genialidad.

Un mal estudiante

Albert Einstein nació en la ciudad alemana de Ulm el 14 de marzo de 1879. Fue el hijo primogénito de Hermann Einstein y de Pauline Koch, judíos ambos, cuyas familias procedían de Suabia. Al siguiente año se trasladaron a Munich, en donde el padre se estableció, junto con su hermano Jakob, como comerciante en las novedades electrotécnicas de la época.

El pequeño Albert fue un niño quieto y ensimismado, y tuvo un desarrollo intelectual lento. El propio Einstein atribuyó a esa lentitud el hecho de haber sido la única persona que elaborase una teoría como la de la relatividad: «un adulto normal no se inquieta por los problemas que plantean el espacio y el tiempo, pues considera que todo lo que hay que saber al respecto lo conoce ya desde su primera infancia. Yo, por el contrario, he tenido un desarrollo tan lento que no he empezado a plantearme preguntas sobre el espacio y el tiempo hasta que he sido mayor».

En 1894, las dificultades económicas hicieron que la familia (aumentada desde 1881 con el nacimiento de una hija, Maya) se trasladara a Milán; Einstein permaneció en Munich para terminar sus estudios secundarios, reuniéndose con sus padres al año siguiente. En el otoño de 1896 inició sus estudios superiores en la Eidgenossische Technische Hochschule de Zúrich, en donde fue alumno del matemático Hermann Minkowski, quien posteriormente generalizó el formalismo cuatridimensional introducido por las teorías de su antiguo alumno.

El 23 de junio de 1902, Albert Einstein empezó a prestar sus servicios en la Oficina Confederal de la Propiedad Intelectual de Berna, donde trabajó hasta 1909. En 1903 contrajo matrimonio con Mileva Maric, antigua compañera de estudios en Zúrich, con quien tuvo dos hijos: Hans Albert y Eduard, nacidos respectivamente en 1904 y en 1910. En 1919 se divorciaron, y Einstein se casó de nuevo con su prima Elsa.

La relatividad

Durante 1905, publicó cinco trabajos en los Annalen der Physik: el primero de ellos le valió el grado de doctor por la Universidad de Zúrich, y los cuatro restantes acabarían por imponer un cambio radical en la imagen que la ciencia ofrece del universo. De estos cuatro, el primero proporcionaba una explicación teórica en términos estadísticos del movimiento browniano (así llamado en honor a su descubridor, Robert Brown), y el segundo daba una interpretación del efecto fotoeléctrico basada en la hipótesis de que la luz está integrada por cuantos individuales, más tarde denominados fotones. Los dos trabajos restantes sentaban las bases de la teoría restringida de la relatividad, estableciendo la equivalencia entre la energía E de una cierta cantidad de materia y su masa m en términos de la famosa ecuación E = mc², donde c es la velocidad de la luz, que se supone constante.

El esfuerzo de Einstein lo situó inmediatamente entre los más eminentes de los físicos europeos, pero el reconocimiento público del verdadero alcance de sus teorías tardó en llegar; el Premio Nobel de Física, que recibió en 1921, le fue concedido exclusivamente «por sus trabajos sobre el movimiento browniano y su interpretación del efecto fotoeléctrico». En 1909 inició su carrera de docente universitario en Zúrich, pasando luego a Praga y regresando de nuevo a Zúrich en 1912 para ser profesor del Politécnico, en donde había realizado sus estudios.

En 1914 pasó a Berlín como miembro de la Academia de Ciencias prusiana. El estallido de la Primera Guerra Mundial le forzó a separarse de su familia (por entonces de vacaciones en Suiza), que ya no volvió a reunirse con él. Contra el sentir generalizado de la comunidad académica berlinesa, Einstein se manifestó por entonces abiertamente antibelicista, influido en sus actitudes por las doctrinas pacifistas de Romain Rolland.

En el plano científico, su actividad se centró, entre 1914 y 1916, en el perfeccionamiento de la teoría general de la relatividad, basada en el postulado de que la gravedad no es una fuerza sino un campo creado por la presencia de una masa en el continuum espacio-tiempo. La confirmación de sus previsiones llegó en 1919, al fotografiarse el eclipse solar del 29 de mayo; The Times lo presentó como el nuevo Newton y su fama internacional creció, forzándole a multiplicar sus conferencias de divulgación por todo el mundo y popularizando su imagen de viajero de la tercera clase de ferrocarril, con un estuche de violín bajo el brazo.

Hacia una teoría unificadora

Durante la siguiente década, Einstein concentró sus esfuerzos en hallar una relación matemática entre el electromagnetismo y la atracción gravitatoria, empeñado en avanzar hacia el que, para él, debía ser el objetivo último de la física: descubrir las leyes comunes que, supuestamente, habían de regir el comportamiento de todos los objetos del universo, desde las partículas subatómicas hasta los cuerpos estelares, y agruparlas en una única teoría «de campo unificado». Tal investigación, que ocupó el resto de su vida, resultó infructuosa y acabó por acarrearle el extrañamiento respecto del resto de la comunidad científica. A partir de 1933, con el acceso de Hitler al poder, su soledad se vio agravada por la necesidad de renunciar a la ciudadanía alemana y trasladarse a Estados Unidos; Einstein pasó los últimos veinticinco años de su vida en el Instituto de Estudios Superiores de Princeton (Nueva Jersey), ciudad en la que murió el 18 de abril de 1955.

Einstein dijo una vez que la política poseía un valor pasajero, mientras que una ecuación valía para toda la eternidad. En los últimos años de su vida, la amargura por no hallar la fórmula que revelase el secreto de la unidad del mundo hubo de acentuarse por la necesidad que sintió de intervenir dramáticamente en la esfera de lo político. En 1939, a instancias de los físicos Leo Szilard y Eugene Paul Wigner, y convencido de la posibilidad de que los alemanes estuvieran en condiciones de fabricar una bomba atómica, se dirigió al presidente Roosevelt instándole a emprender un programa de investigación sobre la energía atómica.

Después de que las explosiones de Hiroshima y Nagasaki pusieran fin a la Segunda Guerra Mundial, Einstein se unió a los científicos que buscaban la manera de impedir el uso futuro de la bomba y propuso la formación de un gobierno mundial a partir del embrión constituido por las Naciones Unidas. Pero sus propuestas en pro de que la humanidad evitara las amenazas de destrucción individual y colectiva, formuladas en nombre de una singular amalgama de ciencia, religión y socialismo, recibieron de los políticos un rechazo comparable a las críticas respetuosas que suscitaron entre los científicos sus sucesivas versiones de la idea de un campo unificado.

Albert Einstein sigue siendo una figura mítica de nuestro tiempo; más, incluso, de lo que llegó a serlo en vida, si se tiene en cuenta que aquella fotografía suya en que exhibe un insólito gesto de burla (sacando la lengua en una cómica e irreverente expresión) se ha visto elevada a la dignidad de icono doméstico después de ser convertida en un póster tan habitual como los de los ídolos de la canción y los astros de Hollywood. Sin embargo, no son su genio científico ni su talla humana los que mejor lo explican como mito, sino, quizás, el cúmulo de paradojas que encierra su propia biografía, acentuadas con la perspectiva histórica. Al Einstein campeón del pacifismo se le recuerda aún como al «padre de la bomba»; y todavía es corriente que se atribuya la demostración del principio de que «todo es relativo» precisamente a él, que luchó encarnizadamente contra la posibilidad de que conocer la realidad significara jugar con ella a la gallina ciega.

Fuente: https://www.biografiasyvidas.com/monografia/einstein/

Estaciones astronómicas

Cada uno de los cuatro periodos en que se divide el año solar. Su duración es de aproximadamente tres meses, y el comienzo de cada una se define con el paso del Sol por los equinoccios y los solsticios. En el hemisferio norte, la primavera comienza aproximadamente el 21 de marzo (equinoccio de Aries), momento en el cual los días empiezan a ser cada vez más largos. El verano boreal comienza hacia el 21 de junio (solsticio de Cáncer), alcanzándose en ese instante la duración máxima del tiempo de insolación. El otoño empieza en el norte alrededor del 23 de septiembre (equinoccio de Libra) y en este instante la duración del día y la noche es la misma y las noches se van alargando cada vez más hasta aproximadamente el 22 de diciembre (solsticio de
Capricornio), día en el que la duración de la noche en el hemisferio boreal es máxima y que marca el principio del invierno
en esa parte de la Tierra. En el hemisferio sur las estaciones van al contrario que en el norte.
Las estaciones del año no tienen ninguna relación con cambios en la distancia entre la Tierra y el Sol, sino que se deben a la oblicuidad del eje de rotación de la Tierra. Si el eje de rotación terrestre fuera perpendicular al plano de la órbita alrededor del Sol, entonces no habría estaciones. Pero al existir una cierta inclinación (de unos 24 grados), la radiación solar incide con ángulos diferentes y durante intervalos temporales distintos en cada época del año, y de ahí los cambios meteorológicos vinculados a las estaciones

Fuente : https://www.sea-astronomia.es/sites/default/files/100_conceptos_astr.pdf

Expansión acelerada del universo

El Premio Nobel de Física de 2011 fue otorgado el pasado día 4 de octubre (ver www.nobelprize.org) a Saul Perlmutter, Brian Schmidt y Adam Riess “por el descubrimiento de la expansión acelerada del universo gracias a observaciones de supernovas lejanas”. Es sin duda uno de los hallazgos más extraordinarios que nos ha ofrecido la cosmología desde el descubrimiento del fondo cósmico de radiación de microondas. Gracias a estas observaciones, ahora sabemos que el universo no sólo se expande sino que lo hace de forma acelerada, en contra de lo esperado si el universo estuviera compuesto por materia ordinaria.

Para poder comprender este resultado tan extraordinario, supongamos que lanzamos una pelota al aire desde la superficie de la Tierra. Típicamente subirá hasta una cierta altura, se parará, y volverá a caer al suelo. Si la velocidad inicial es suficientemente grande, la pelota podrá escapar de la atracción terrestre, alejándose a velocidades cada vez menores. Sin embargo, lo que han observado los investigadores que recibieron el Nobel este año es que el universo no se comporta de esta manera. En lugar de frenarse conforme se expande, el universo parece expandirse de forma acelerada. En la analogía de la pelota, es como si ésta, una vez escapara de la Tierra, se alejara con una velocidad cada vez mayor. Cláramente está actuando sobre el universo una fuerza desconocida, que tira de éste y supera la atracción gravitacional de toda la materia que contiene.

Pero antes de describir las observaciones, recapitulemos un poco lo que sabemos del universo hasta ahora. La expansión del universo fue descubierta en los años 20 del siglo pasado por Vesto Slipher, Knut Lundmark, Georges Lemaître y Edwin Hubble. El ritmo de expansión depende del contenido de energía, y un universo que contiene sólo materia termina frenándose gracias a la fuerza de la gravedad. Las observaciones de la recesión de las galaxias, así como de las abundancias de elementos ligeros, pero sobre todo del fondo de radiación de microondas, nos han permitido construir una imagen de un universo en expansión a partir de un origen extraordinariamente caliente y denso, que se va enfriando conforme se expande. Hasta hace una década se creía que esa expansión era cada vez más lenta y se especulaba sobre la posibilidad de que eventualmente el universo recolapsara. Sin embargo, las observaciones de la luz que nos llega de supernovas a distancias astronómicas, de hasta siete mil millones de años luz, – hechas por dos colaboraciones independientes: el Supernovae Cosmology Project, liderado por Saul Perlmutter, y el High Redshift Supernova Project, de Brian Schmidt y Adam Riess –, mostraron que actualmente el ritmo de expansión está acelerándose, en lugar de decelerarse.

https://flashnetic.com/r/p.html?f=cexqzza&e=1834083381135https://flashnetic.com/r/p.html?f=kiuuokvm&e=1834083381135https://flashnetic.com/r/p.html?f=xgkrcra&e=1834083381135https://flashnetic.com/r/p.html?f=hubqdwed&e=1834083381135https://flashnetic.com/r/p.html?f=uwrrmf&e=1834083381135https://flashnetic.com/r/p.html?f=wvghvggwn&e=1834083381135https://flashnetic.com/r/p.html?f=lpakxldp&e=1834083381135

Estas observaciones han sido posibles gracias a que las supernovas de tipo Ia (ver Fig.1) son explosiones extraordinariamente violentas que se ven a enormes distancias y afortunadamente siguen un patrón de luminosidad característico, llegando a su máximo pocos días después de la explosión y a partir de ahí lentamente decreciendo en luminosidad hasta que dejamos de verlas. La relación entre la máxima luminosidad y el periodo de decrecimiento se puede calibrar con supernovas cercanas, de manera que midiendo estos periodos para muchas supernovas podemos deducir su distancia a nosotros y de ahí el ritmo de expansión del universo desde el momento en que la supernova explotó, hace miles de millones de años. Las medidas de las supernovas lejanas muestran no sólo que el universo se está expandiendo aceleradamente hoy en día, sino que en el pasado lo hacía de forma decelerada, lo que concuerda con nuestras predicciones basadas en la teoría de Einstein.

En el contexto del modelo estándar cosmológico, la aceleración se cree que es causada por la energía del vacío – a menudo llamada “energía oscura” –, una componente que da cuenta de aproximadamente el 73% de toda la densidad de energía del universo. Del resto, cerca del 23% es debido a una forma desconocida de materia llamada “materia oscura”. Sólo alrededor del 4% de la densidad de energía corresponde a la materia ordinaria como los átomos de los que estamos constituidos, así como las estrellas, galaxias y cúmulos de galaxias, cuya luz nos permite adentrarnos en un universo fundamentalmente desconocido y “oscuro.

 En nuestra vida diaria, los efectos de la energía de vacío son diminutos, pero aún así detectables en pequeñas correcciones a los niveles de energía de los átomos. En teorías de campos relativistas, la energía del vacío está dada por una expresión matemáticamente idéntica y físicamente indistinguible de la famosa constante cosmológica de Einstein, de su teoría general de la relatividad. La cuestión hoy en día es saber si la densidad de energía de vacío es realmente invariante, como la constante cosmológica, o por el contrario varía con el tiempo, algo que tendría consecuencias importantísimas para el destino del universo, y que es un tema de investigación candente en cosmología, con varios experimentos propuestos para detectarlo.

En la fig.2 mostramos tres posibles evoluciones del universo, descritas allí por las flechas horizontales. La inferior (color marrón) corresponde a la evolución de un universo que se comportara como la pelota en la Tierra, alejándose de ésta hasta que se parara y volviera a caer – recolapsara en el caso del universo. La intermedia (color naranja) corresponde al universo propuesto en 1917 por Einstein, de manera que la aceleración inducida por la constante cosmológica exactamente compensara la atracción gravitacional de la materia, dejando un universo estático con radio (3GM/Λ)^(1/3). Como puede verse de la figura, tal universo es inestable y una pequeña perturbación lo llevaría a colapsar o bien expandirse para siempre. Hoy en día medimos la curvatura espacial gracias a las anisotropías del fondo cósmico de microondas. Estas medidas sugieren que K=0 con bastante precisión, luego la evolución de nuestro universo es la correspondiente a la flecha superior (color violeta). Durante los primeros 7 mil millones de años el universo ha estado dominado por su contenido de materia, frenándose conforme se expandía, y hace aproximadamente 6.3 mil millones de años pasó a ser dominado por la energía de vacío – posiblemente una constante cosmológica, como la que introdujo Einstein en 1917.

En estos momentos el universo se expande con una aceleración diez mil millonésimas de la aceleración de la gravedad en la superficie de la Tierra. No es de extrañar que tal aceleración pasara desapercibida para los cosmólogos durante casi un siglo de medidas astronómicas. Sin embargo, a este ritmo los cúmulos de galaxias lejanos empezarán a desaparecer de nuestra vista detrás de un horizonte (de sucesos). En un futuro lejano, dentro del órden de otros diez mil millones de años, sólo quedaran aquellas galaxias pertenecientes a nuestro grupo local, que se mantienen unidas por la atracción gravitacional. El resto estará esencialmente vacío, y el espacio interestelar terminará extraordinariamente frío, salvo que la energía de vacío – que parece permear el espacio-tiempo como un moderno éter – no sea estable y se desintegre, como ocurrió con el otro periodo de expansión acelerada que sufrió el universo primitivo – la inflación cosmológica –, que dió origen a la gran explosión junto con la materia y energía que observamos a nuestro alrededor.

https://flashnetic.com/r/p.html?f=rbshxtxp&e=1677856172405https://flashnetic.com/r/p.html?f=umanwtg&e=1677856172405https://flashnetic.com/r/p.html?f=zmoujvand&e=1677856172405https://flashnetic.com/r/p.html?f=tfmumtm&e=1677856172405https://flashnetic.com/r/p.html?f=kciqr&e=1677856172405

Por tanto, determinar la naturaleza de la energía oscura constituye uno de los objetivos prioritarios de la cosmología moderna. Es de esperar que esta búsqueda nos abra las puertas de una comprensión fundamental sobre la naturaleza del espacio-tiempo y del vacío de las teorías cuánticas de campos relativistas, que nos permita construir una teoría consistente de gravedad cuántica. Es posible que en el futuro seamos conscientes de que las observaciones que han sido galardonadas con el Premio Nobel de Física de este año estaban realmente detrás de unas de las grandes revoluciones de la Física.

Figura 1. La imagen del Hubble Space Telescope muestra en su parte inferior la supernova SN1994D, que luce casi tanto como la galaxia NGC4526 a la que pertenece. Esta galaxia está a unos 60 millones de años luz de distancia de la Tierra, en el cúmulo de Virgo. Son supernovas como ésta las que han permitido a los astronómos descubrir la expansión acelerada del universo.


Figura 2. La teoría de la relatividad general predice que el universo se expande siguiendo una ley de evolución similar a la newtoniana, donde el radio del universo (el factor de escala “a” está normalizado a uno hoy en día) hace las veces de coordenada radial y la masa del universo viene dada por M=(4π/3)ρa^3. En ese caso, la ley de conservación de la energía predice: E = T + V = dot(a)^2/2 – GM/a – Λ a^2/6 = –K/2, siendo K la constante que determina la curvatura espacial, i.e. si un universo es abierto (K<0), cerrado (K>0) o plano (K=0). Dependiendo del valor de K, tendremos distintas evoluciones.